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1. INTRODUCTION 

Diabetic retinopathy (DR) is a chronic disease related with the eye retina which presently comprises of one of the most 

common causes of blindness and loss of vision. The incidental statistics indicate that DR is the primary cause of blindness in 

people of working age of the present era. DR is an outcome of diabetes-mellitus, illness which elevates the concentration of 

glucose in blood. This unusually high glucose levels damage the eye vessel endothelium infuriating set of damages related to 

the illness. Although having diabetes does not necessarily entail vision mutilation, about 2% of the patients affected by this 

disease are blind and 10% undergo vision deprivation after 15 years of diabetes as a result of DR complications. Vision-

threatening retinopathy is rare in type 1 diabetic patients in the first 3–5 years of diabetes or before puberty. During the next 

two decades, nearly all type 1 diabetic patients develop retinopathy. Up to 21% of patients with type 2 diabetes have 

retinopathy at the time of first diagnosis of diabetes, and most develop some degree of retinopathy over time. The estimated 

prevalence of diabetes for all age groups worldwide was 2.8% in 2000 and will be 4.4% in 2030.  

Despite DR being an incurable disease, if the illness is detected and treated in its early stages visual impairment can be 

avoided in 98% of cases. In this respect, though laser photocoagulation has established to be a successful treatment for 

preventing major loss of vision produced by DR yet the early detection of the illness is still a difficult task since people 

affected by it do not recognize symptoms until visual loss develops which usually happens in the later disease stages, when 

treatment loses its effectiveness. This is why the prone diabetic population has to be examined periodically by public or 

private health systems in search of early DR signs. However, this preventive action involves a daring confrontation by the 

health systems due to the high number of ophthalmologists and material resources needed to attend so many patients 

requiring ophthalmologic revision. Hence, this paper proposes another computerized handling of retinal images with a 

specific end goal to help individuals recognize diabetic retinopathy in advance. The end goal of proposed literature is to 

achieve desired level of classification accuracy by reducing noise levels from within the 1-3 levels of non-proliferative 

dataset where „1‟ indicates mild DR, „2‟ indicates moderate DR and „3‟ indicates severe or proliferative DR. Noise handling 

through Gaussian filtering is used at pre-processing stage. Gaussian filter is capable of handling noise at edges and also 

considered the best filters in time domain. Resizing operation is done at preprocessing stage thus, ensuring uniformity along 

the input layer for faster operation. MSVM gives multiclass segmentation and classification operation.  

 

2. LITERATURE SURVEY 

The existing studies and various researchers have investigated the domain of Automated diagnosis of Diabetic Retinopathy. 

This review, therefore, is an attempt to critically explore the literature in the area of machine learning and deep learning 

techniques used for DR detection culminating the process with derivation of a comparison between the two. 

 (Jen Hong Tan et al, 2017, Automated Segmentation of Exudates, Hemorrhages, Microaneurysms using Single 

Convolutional Neural Network)The paper proposes to use a 10-layer convolutional neural network to automatically 

concurrently segment and differentiate exudates, hemorrhages and micro-aneurysms. Input images were normalized before 

segmentation. (Doshi et al, 2016, Diabetic Retinopathy Detection using Deep Convolutional Neural Networks)This paper 

aims at automatic diagnosis of DR into different stages using deep learning. The design and implementation of GPU 

accelerated deep convolutional neural networks to automatically diagnose has been presented hence classifying high-
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resolution retinal images into 5 stages of the disease based on severity.  (Gargeya et al, 2016, Automated Identification of 

Diabetic Retinopathy Using Deep Learning)This paper presents the development followed by an evaluation of a data-driven 

deep learning algorithm as a diagnostic tool for automated DR detection. The algorithm processed color fundus images and 

besides classifying them as healthy (no retinopathy) or having DR. A total of 75 137 publicly available fundus images from 

diabetic patients were used to train and test this model to differentiate healthy fundi from those with DR. (Grinsven, 2016, 

Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color 

fundus images)The proposed method provides an improvement and speed-up of the CNN trained for medical image analysis 

tasks by dynamically selecting misclassified negative samples. Heuristic sampling of training samples is done based on 

classification by the current status of the CNN. Weights are then assigned to the training samples. A comparison has also 

been performed between the two i.e., CNN with (SeS) and without (NSeS) the selective sampling method.  

 

3. DATSET DESCRIPTION 

The image dataset used is DIARETDB0 consisting of 3 categories of 200 eye fundus images. Resizing operation manually as 

well as automated mechanism is posted upon to fit into the input layer of the network. The images were captured and resized 

to 77x100 with 3 color channels.  

               
(a1)                              (a2)                              (a3)                              (a4)                              (a5) 

 

         
(b1)                              (b2)                              (b3)                              (b4)                              (b5) 

 

         
(c1)                              (c2)                               (c3)                              (c4)                              (c5) 

 

Figure 1: Fig. 1.a) mild non-retinopathy images: (b) moderate non-retinopathy images, (c) Severe non-proliferative 

retinopathy images. 

 

The 200 pictures are bundled in 3 sets, one for each ophthalmologic division, utilizing the PNG format. In addition, an Excel 

record with therapeutic conclusions for each picture is given. In this work, we utilize the pictures of only one ophthalmologic 

division containing 48 pictures with mild, 48 with moderate and 48 with severe DR cases. 
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3. PROPOSED SYSTEM 

 
Figure 2: Flowchart showing the flow of operation 

4. PERFORMANCE ANALYSIS AND RESULTS 

The performance of the system is analyzed by the use of parameters such as accuracy, specificity and sensitivity. 

Accuracy is obtained by subtracting the actual result from the approximate result. In terms of predictions accuracy is obtained 

as 

 
                                            Equation 5: Accuracy in terms of prediction 

Sensitivity is obtained by dividing number of positive predictions to the total true positive rate. 

                                                  Sensitivity=     

                                             Equation 6: Sensitivity evaluation formula 

Specificity is another parameter used to evaluate correctness of the proposed system. It is given as under 

                                                             Specificity=  

                                            Equation 7: Specificity obtaining formula 

The disease detection and prediction is given though accurate classification, result in terms of plots is given as under 

For level 1 DR image set accuracy is given as under 
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Table 1: Predicted accuracy corresponding to (Mild) non-proliferative retinopathy images (level 1) 

Imageset Accuracy with Deep Learning and 

decision tree classifiers(%) 

Accuracy with MSVM(%) 

 

76 82 

 

78 85 

 

79 84 

 

78 83 

 

79 82 

For level 2 retinopathy image set accuracy is given as under 

 

Table 2: classification accuracy for (Moderate) non-proliferative diabetic retinopathy images 

Imageset Accuracy with Deep Learning and 

decision tree classifiers(%) 

Accuracy with MSVM(%) 

 

78 82 

 

79 84 

 

78 82 

 

77 81 

 

76 82 

For level 3 image set accuracy is given as under 
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Table 3: prediction accuracy of image set (Severe) non-proliferative diabetic retinopathy images. 

Imageset Accuracy with Deep Learning and 

decision tree classifiers(%) 

Accuracy with MSVM(%) 

 

78 82 

 

77 81 

 

75 80 

 

76 81 

 

78 82 

 

Result comparison in terms of accuracy, sensitivity and specificity are given as under 

 

Table 4: Result comparison in terms of accuracy, sensitivity and specificity 

Image set name Parameters Existing (%) Proposed(%) 

Level 1 DR(Mild) Accuracy 

Specificity 

Sensitivity 

75 

73 

78 

81 

80 

82 

Level 2 DR(Moderate) Accuracy 

Specificity 

Sensitivity 

77 

79 

78 

82 

82 

84 

Level 3 DR(Severe) Accuracy 

Specificity 

Sensitivity 

78 

79 

78 

83 

84 

82 

 

Classification accuracy of proposed system appears to be more as compared to existing techniques. Multiple class prediction 

mechanism showing higher accuracy proving the worth of study.  

 
Figure 3Confusion matrix: 
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Results and performance analysis as indicated through the plot shows that deep learning combined with multi support vector 

machine yield better result. 

 

5. CONCLUSION AND FUTURE SCOPE 

Deep Learning mechanism can handle large dataset. However slight change in the present dataset could lead to drastic change 

in result due to ambiguity problem present within existing literature. In order to tackle the issue, stable data presentation by 

handling noise within the image is considered in considered approach. The decision tree classification is complex and could 

lead to indifferent results and to tackle the issue Support vector machine can be used since it is resilient in case noisy data is 

presented to the model. Overall classification accuracy could improve by the application SVM. 
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